Logstash Timestamp

Introduction

A few days back I encountered with a simple but painful issue. I am using ELK to parse my application logs  and generate some meaningful views. Here I met with an issue which is, logstash inserts my logs into elasticsearch as per the current timestamp, instead of the actual time of log generation.
This creates a mess to generate graphs with correct time value on Kibana.
So I had a dig around this and found a way to overcome this concern. I made some changes in my logstash configuration to replace default time-stamp of logstash with the actual timestamp of my logs.

Logstash Filter

Add following piece of code in your  filter plugin section of logstash’s configuration file, and it will make logstash to insert logs into elasticsearch with the actual timestamp of your logs, besides the timestamp of logstash (current timestamp).
 
date {
  locale => "en"
  timezone => "GMT"
  match => [ "timestamp", "yyyy-mm-dd HH:mm:ss +0000" ]
}
In my case, the timezone was GMT  for my logs. You need to change these entries  “yyyy-mm-dd HH:mm:ss +0000”  with the corresponding to the regex for actual timestamp of your logs.

Description

Date plugin will override the logstash’s timestamp with the timestamp of your logs. Now you can easily adjust timezone in kibana and it will show your logs on correct time.
(Note: Kibana adjust UTC time with you bowser’s timezone)

Chef Start here with ease..


Introduction

Until I discovered cooking, I was never really interested in anything. Julia Child

Chef, the lead in automation industry has many tickling facet and calibre. Before introducing the potentials of “The Chef”, it’s non negotiable to evade the foresight of its relevance to devops exercises. Chef can take care of server automation, infrastructure environment and continuously deliver your application.


Motive behind this array

With this blog series, we will familiarize you with the concepts of chef and will try to make you comfortable with our hands on blogs. This series of blog contains 15 blogs in a row which will enhance the knowledge and draw your faith in chef.

Always Pre-Heat The Oven Before Putting The Meat In !!

Prerequisites

For all the upcoming blogs we presume that you have basic understanding of Git, Docker,Vagrant and Linux. This blog series is written in consideration with centos as platform, although you can apply them on ubuntu by following some minor changes.


We are going to use our public git repository for all the blogs in this series. We will be using centos7 vagrant box to spin up our testing environment.


We are going to follow a single problem statement in our all blogs to maintain the uniformity and avoid the ambiguity. We are going to install nginx using chef and deploying two virtual host (blog.opstree.com, chef.opstree.com) with it.


Blogs in this series

In this blog we describe Nginx and manually setup the nginx, as per the problem statement and also create two virtual host(blog.opstree.com, chef.opstree.com).
Here we took some example of resources such as package, git, file and service and put our hands to work with chef-apply. We perform some simple task using chef resources.
This blog provides you theoretical concepts about chef resources. In this article  resources and their attributes elaborated.
Chef recipes is in consideration for this edition. Create your first recipe and apply it with chef. Complete doctrine behind the recipes of chef with simplified examples.
Walls of chef house, the cookbook, written from scratch with step to step explanation. Setup of nginx and proxy implementation with sample cookbook.
This blog furnish entire theoretical stuff about cookbooks. This includes command line cookbook generation and handling. One by one description of complete directory structure of a cookbook.  
Installation of chef kitchen. Testing of our nginx cookbook in different environment using docker container. Create, converge, verify and destroy a node with kitchen.
  1. Chef-Kitchen Chefs diagnosis center..
Theory behind the chef kitchen. Complete cycle of kitchen. With in this article elaborated view of .kitchen.yml file, and .kitchen folder provided.
  1. Chef Foodcritic && Chef Rubocop Handle it casually..
Chef lint tools, foodcritic and rubocop requirement. Theory, setup and practice exercises for foodcritic and rubocop.  
  1. Chef-Databags Carry all at once..
Introduction to databags and their need. Division of code and data with databags.  Databags implementation with chef-solo. Setup of mysql password with databags.  
  1. Chef-Roles Club everybody..
Requirement and implementation of chef roles. Clubbing of multiple nodes with chef roles. Complete web stack (webserver, proxy server and database) setup with roles.
  1. Chef-Environment  Organized wisely..
Chef environments for better management of the need of an organization. A complete organizational view with chef to setup different environment. Handle environments with chef-knife.
  1. Chef Server-Client Setup
Complete setup of chef client-server mode. Use of vagrant provisioning only, to spin up chef-server, chef-client and workstation.
  1. Collaboration of Client Server and Workstations
How chef-server, client and workstations work together to automate a complete infrastructure. Chef-server web interface.
  1. Chef Server-Client Work quietly..
Kickoff working with workstation. Chef-client. Install nginx and setup proxies with nginx cookbook on client node.

Setup Jenkins using Ansible

In this document I’ll walk you through how you can setup Jenkins using Ansible.

Prerequisites

  •  OS – Ubuntu {at least two machine required in production}
  •  First machine for Ansible  installation
  •  Second machine where we will install jenkins server
  • You should have basic understanding of ansible workflow.
Note :  You should have password less login enabled in second machine. use this link 
http://www.linuxproblem.org/art_9.html

Ansible Installation
Before starting with installing Jenkins using Ansible, you need to have Ansible installed in your system.

$ curl https://raw.githubusercontent.com/OpsTree/AnsiblePOC/alok/scripts/Setup/setup_ansible.sh | sudo bash

Setup jenkins using Ansible
Install jenkins ansible roles
Once we have ansible installed in our system, we can start installing the jenkins using ansible. To install we will use an already available ansible role to setup jenkins

$ ansible-galaxy install geerlingguy.jenkins
to know more about the jenkins role hit this link https://galaxy.ansible.com/detail#/role/440

Ansible roles default directory path is /etc/ansible/roles
Make ansible playbook file

Now the next step is to use the installed jenkins roles to install the jenkins. For this purpose we will create a playbook  and hosts file with below content

$ cd ~/MyPlaybook/jenkins
create a file hosts and add below content
[jenkins_hosts]
192.168.33.15

Screenshot from 2015-11-30 12:55:41.png
Next create  a file site.yml and add below content
– hosts: jenkins_hosts
 roles:
     – { role: geerlingguy.jenkins }

Screenshot from 2015-11-30 12:59:08.png
so configuration file is done, the next step is to run ansible playbook command

$ ansible-playbook -i hosts site.yml

Now that Jenkins is running, go to http://192.168.33.15:8080. You’ll be welcome by the default Jenkins screen.

How to Manage Amazon Web Services Instances part 1

If you want to minimize the amount of money you spend on Amazon Web Services (AWS) infrastructure, then this blog post is for you. In this post I will be discussing  the rationale behind starting & stopping AWS instances in an automated fashion and more importantly, doing it in a correct way. Obviously you could do it through the web console of AWS as well, but it will need your daily involvement. In addition, you would have to take care of starting/stopping various services running on those instances.

Before directly jumping on how we achieved instance management in an automated fashion, I like to state the problem that we were facing. Our application testing infrastructure is on AWS and it is a multiple components(20+) application distributed among 8-9 Amazon instances. Usually our testing team starts working from 10 am, and continues till 7 pm. Earlier we used to keep our testing infrastructure up for 24 hours, even though we were using it for only 9 hours on weekdays, and not using it at all on weekends. Thus, we were wasting more then 50% of the money that we spent on the AWS infrastructure. The obvious solution to this problem was: we needed an intelligent system that would make sure that our amazon infrastructure was up only during the time when we needed it.

The detailed list of the requirements, and the corresponding things that we did were:

  1. We should shut down our infrastructure instances when we are not using them.
  2. There should be a functionality to bring up the infrastructure manually: We created a group of Jenkins jobs, which were scheduled to run at a specific time to start our infrastructure. Also a set of people have execution access to these jobs to start the infrastructure manually, if the need arises.
  3. We should bring up our infrastructure instances when we need it.
  4. There should be a functionality to shut down the infrastructure manually: We created a group of Jenkins jobs that were scheduled to run at a specific time to shut down our infrastructure. Also a set of people have execution access on these jobs to shut down the infrastructure manually, if the need arises.
  5. Automated application/services start on instance start: We made sure that all the applications and services were up and running when the instance was started.
  6. Automated graceful application/services shut down before instance shut down: We made sure that all the applications and services were gracefully stopped before the instance was shut down, so that there was be no loss of data.
  7. We also had to make sure that all the applications and services should be started as per defined agreed order.

Once we had the requirements ready, implementing them was simple, as Amazon provides a number of APIs to achieve this. We used AWS CLI, and needed to use just 2 simple commands that AWS CLI provides.
The command to start an instance :
aws ec2 start-instances –instance-ids i-XXXXXXXX
The command to stop an instance :
aws ec2 stop-instances –instance-ids i-XXXXXXXX 

Through above commands you can automate starting and stopping AWS instances, but you might not be doing it the correct way. As you didn’t restrict the AWS CLI allow firing of start-instances and stop-instances commands only, you could use other commands and that could turn out to be a problem area. Another important point to consider is that we should restrict the AWS instances on which above commands could be executed, as these commands could be mistakenly run with the instance id of a production amazon instance id as an argument, creating undesirable circumstances 🙂

In the next blog post I will talk about how to start and stop AWS instances in a correct way.

Puppet module to setup nodejs deployment 2

As I said in the previous blog Puppet module to setup nodejs deployment, the nodejs module was for providing the basic infrastructure for automated node app’s deployment & as promised I’ve released the next module “nodeapp” that can be used to setup a node app on the target server.

First of all I’ll talk about what this module will do to facilitate the automated deployment of a nodejs app, as already discussed we are following a convention that all the node app’s code will be present at /home/nodejs/ which is referred by startNodeApp.sh script so we create the directory of nodejs app. The deployNodeApp.sh script was using the upstart to manage the nodejs app instance i.e starting/stoppping the nodejs app, the nodeapp module takes care of creating the require upstart configuration at /etc/init/.conf. Also we use monit to monitor the nodejs app’s so that we can start/stop the nodejs app’s using the web ui of monit & also see various stats such as cpu, memory, load.. consumption of nodejs app.

This nodeapp module is a userdefined type which takes the name of nodeapp as an argument, as a result of which you can setup any number of nodejs app’s on a system.
i.e nodeapp{‘search-demo’: app_name => “search-demo”}
This entry will create below files

/etc/init/search-demo.conf : An upstart configuration file, using which search demo nodejs app can be managed as a service.

#!upstart
description “node.js search-demo server”
author      “sandy”

start on startup
stop on shutdown

script
    export HOME=”/home/nodejs”

    echo $$ > /var/run/search-demo.pid
    exec sudo -u nodejs /home/nodejs/startNodeApp.sh search-demo
end script

pre-start script
    # Date format same as (new Date()).toISOString() for consistency
    echo “[`date -u +%Y-%m-%dT%T.%3NZ`] (sys) Starting” >> /var/log/search-demo.sys.log
end script

pre-stop script
    rm /var/run/search-demo.pid
    echo “[`date -u +%Y-%m-%dT%T.%3NZ`] (sys) Stopping” >> /var/log/search-demo.sys.log
end script

/etc/monit/conf.d/search-demo.monit : A monit configuration file, using which search-demo nodejs app can be monitored & even automatedly restarted

check process search-demo with pidfile /var/run/search-demo.pid
 stop program = “/sbin/stop search-demo”
 start program = “/sbin/start search-demo”

So using these 2 modules nodejs & nodeapp you can make any system up & running for nodejs app’s automated deployment