How DHCP and DNS are managed in Amazon VPC

In our day-to-day lives, we take a lot of things for granted. Our body, our friends, water, the food we eat, clothes we wear, IP address of our host, FQDN of our favorite websites, etc. In our ignorance, we forget to consider how our lives would be without them. Let’s discuss the leisure of friends, food, etc sometime later. For now, we’ll limit our thoughts to how DHCP and DNS are managed in AWS, both of which are the backbone to connections among hosts and servers over a network.

Continue reading “How DHCP and DNS are managed in Amazon VPC”

Setting Up Docker Overlay Network

When I set forth with my journey of containerization with docker, I have gone through a misconception that Overlay networking in docker can’t be set up without any orchestrator like Docker swarm, Kubernetes. But after spending some time with containers I realized that I was wrong, Orchestrators leverage the functionality of overlay networking but it is not true that we cannot use overlay networks without any swarm or Kubernetes.

Continue reading “Setting Up Docker Overlay Network”

Docker Networking – Containers Communication

In the modern world, the container is a fascinating technology, as it has revolutionized software development and delivery. Everyone is using containers because of its dynamic, scalable, and isolated nature.

People do use some orchestration software such as Kubernetes, Openshift, Docker Swarm, and AWS ECS, etc to run their production workloads on containers.

But the question is how these containers communicate with each other in various situations? Continue reading “Docker Networking – Containers Communication”

Its not you Everytime, sometimes issue might be at AWS End

Today an issue reported to me that website of our client was loading very slow which was hosted on AWS Windows server and the same website was loading fine when accessed from outside AWS network,I just felt like might be a regular issue but it all together took me to an inside out of the network troubleshooting.

Initially, we checked for SSL certificate expiry, which was not the case, so below are the Two steps which we used to troubleshoot the issue:

Troubleshooting through Browser via Web developer Network tool

In browser we checked which part of code was taking time to load using Network option in developer tools:

  • Select web developer tools in firefox
  • Then select network

We identified one of the GET calls was taking time to load.
Then when this thing was reported to AWS support team they provided further analysis of this. We can save the report as (.HAR) file which tells us below things:

  • How long it takes to fetch DNS information
  • How long each object takes to be requested
  • How long it takes to connect to the server
  • How long it takes to transfer assets from the server to the browser of each object.

Troubleshooting using Traceroute

Then we tried to troubleshoot the AWS network flow using “tracert ” with below output:

Tracing route to [151.x.x.x] over a maximum of 15 hops:

1 <1 ms <1 ms <1 ms 10.x.x.x

2 * * * Request timed out.

3 * * * Request timed out.

4 * * * Request timed out.

5 * * * Request timed out.

6 * * * Request timed out.

7 <1 ms <1 ms <1 ms 100.x.x.x

8 <1 ms <1 ms 1 ms 52.x.x.x

9 * * * Request timed out.

10 2 ms 1 ms 1 ms [67.x.x.x]

11 2 ms 2 ms 2 ms [67.x.x.x]

12 2 ms 2 ms 2 ms [205.x.x.x]

13 3 ms 3 ms 2 ms 63.x.x.x

14 3 ms 3 ms 3 ms 198.x.x.x

15 4 ms 4 ms 4 ms [63.x.x.x]

And when this was reported to AWS team that RTO from 2-6 we were getting was due to connectivity with internal AWS network which needs to be byepass and was not an issue as packet still reached the next server within 1ms.

Traceroute gives an insight to your network problem.

  • The entire path that a packet travels through
  • Names and identity of routers and devices in your path
  • Network Latency or more specifically the time taken to send and receive data to each devices on the path.

Solution provided by AWS Team

After all the Razzle-Dazzle they just refreshed the network from their end and there was no more website latency after that while accessing from AWS internal network.

Tool recommended by AWS Support team for Network troubleshooting if the issue arises in future:

Wireshark along with .har file using network in web-developer tools from browser.

Wireshark is a network packet analyzer. A network packet analyzer will try to capture network packets and tries to display that packet data as detailed as possible.
You could think of a network packet analyzer as a measuring device used to examine what’s going on inside a network cable, just like a voltmeter is used by an electrician to examine what’s going on inside an electric cable (but at a higher level, of course).
In the past, such tools were either very expensive, proprietary, or both. However, with the advent of Wireshark, all that has changed.

Wireshark is perhaps one of the best open source packet analyzers available today.


The following are some of the many features Wireshark provides:

  • Available for UNIX and Windows.
  • Capture live packet data from a network interface.
  • Open files containing packet data captured with tcpdump/WinDump, Wireshark, and a number of other packet capture programs.
  • Import packets from text files containing hex dumps of packet data.
  • Display packets with very detailed protocol information.
  • Save packet data captured.
  • Export some or all packets in a number of capture file formats.
  • Filter packets on many criteria.
  • Search for packets on many criteria.
  • Colorize packet display based on filters.
  • Create various statistics.

… and a lot more!

Classless Inter Domain Routing Made Easy

Introduction :
One day I was working with VPC (Virtual Private Cloud) inside AWS(Amazon Web Services), where I had a need to calculate the CIDR notation of an IP address and subnet combinations.
I had to use online tools to calculate the Subnets and CIDR every time when I was working with VPC, but I found it interesting that how the network get  broken into different small Networks. So, finally I decided why not to learn CIDR Methods, and then calculate it by my own side instead of using tools every time.
But the questions that striked in my mind were:
  • What is CIDR ?
  • How CIDR Came into Picture ?
  • What CIDR do ?
For Understanding CIDR – (Classless Inter-Domain Routing) few thing need to be cleared before :

1. IP Addresses
2. Structure of IP Address
3. Internet Protocol Address Types
4. Classes
5. Network Mask
6. Subnetting

IP Address –

It is the Address of the Computer, Laptop, Printers or even of the Mobile Sets.
Everyone has some Address, so as these devices also have an Internet Protocol Address (IP Address), also called as Logical Address.
In a Network there are many Computers …
A Network is a group of two or more Computers Linked Together.
So When there are Many Computers in a Network, We need to uniquely identify each Computer, so there IP ADDRESS works as an Unique Identifier for Computers and Other Devices.
For Example : There are Twin Sisters, How we are going to Identify them differently  
By their Name that are unique for each of them.
Here Name of the Girls are the IP Addresses that will be unique and the two Girls are the two Devices.

Structure of IP Address –

Now the Question is How do an IP Address looks like??
IP ADDRESS is made up of 32-Bit – = (8+8+8+8=32 Bits)
A bit (short for binary digit) is the smallest unit of data in a computer.
Binary Conversion for 192 :
192 :    128      64       32      16           8      4          2         1
              1        1         0         0           0       0          0         0
          Bit 1    Bit 2    Bit 3   Bit 4     Bit 5    Bit 6   Bit 7     Bit 8    – Total Bit = 8
128+64 = 192
So, 0’s for Other and 1 for the Number whose sum will be 192
Binary Conversion for 168 :
168 :    128      64       32         16       8           4         2          1
             1          0         1           0        1           0         0          0
           Bit 1    Bit 2    Bit 3   Bit 4     Bit 5    Bit 6   Bit 7     Bit 8 – Total Bit = 8
Binary Conversion for 33 :
  33 :   128        64       32        16       8           4         2          1
             0          0         1           0        0           0         0          1
           Bit 1    Bit 2    Bit 3   Bit 4     Bit 5    Bit 6   Bit 7     Bit 8 – Total Bit = 8
Binary Conversion for 10 :
10 :     128       64       32         16       8          4          2          1
             0          0         0           0        1           0         1          0
           Bit 1    Bit 2    Bit 3   Bit 4     Bit 5    Bit 6   Bit 7     Bit 8 – Total Bit = 8 – total of 32 Bit.
Dotted Decimal Notation : In dot form 4 Sections are called as OCTETS – Vendor Neutral Term for Bytes.
Let a IP Be :
Inside a Network : 200.10.20 – will remain same and 30 will be unique for each.

Type of IP Address –

  1. Assignment Method
  2. Classes : 1) Classful
                    2) Classless
  3. Public / Private
  4. Version

Assignment Methods :

Assignment Method is method that defines how to assign an IP address to a Device.
IP Address can be assigned in two ways
1) Static IP Address
Static IP Address is the IP Address in which configuration is done Manually and is used in small networks.
2) Dynamic IP Address
Dynamic IP Address is the IP Address in which the configuration is done by the Computer Interface or by the Host Interface – DHCP (Dynamic Host Configuration Protocol)
— Configuration is Automatic–

Classes :

classes define that in an IP, How much part will be for Network and How much is for Host.
There are 2 types of classes in IP Addressing :
  1. Classful
  2. Classless
CLASSFUL : IP Address are divided into 5 Classes;
Class A : 0 – 126                         N.H.H.H              Assigned for Large Organization
127                                               N.H.H.H             Assigned for the Loopback
Class B : 128 – 191                     N.N.H.H              Assigned for Medium Companies
Class C : 192 – 223                     N.N.N.H              Assigned for Small Organizations
Class D : 224 – 239                                                 Assigned for Multicasting
Class E : 240 – 255                                                 Assigned for Experimental Purpose

CLASSLESS : Classless addressing is an  IP address where a subnet mask does not define its class.  Subnet mask can be anywhere between bit 0 and bit 31.
Range of Class A IP Address : –
Network ID : 8 Bit
Host ID : 24 Bit (8+8+8)
  • IP Address begins with 0,First Bit will always be Zero
  • 7 Remaining Bits in Network part : Only 128 Possible class A Network
  • 24 Bits in Local Part : Over 16 million hosts per Class A Network
  • All class A network parts are assigned or reserved.
Network ID(N)
Host ID(H)
Host ID(H)
Host ID(H)
0                     7 8                                                                31
0NNNNNNN       .      HHHHHHHH     .      HHHHHHHH   .         HHHHHHHH
In Binary :
Class A starts from : 00000000.00000000.00000000.00000000
Class A ends at      : 01111111.11111111.11111111.11111111
In Decimal :
Class A IP Address is from to
Number of Networks : 2^7 = 128
Number of Hosts : 2^24
SOME EXCEPTIONS IN CLASS A : Cannot be assigned to host : For Self check – Represent Default Network or M : For Self check – Represent Default Network or My IP : Loop Back Address Range : solve NIC Problem : Loop Back Address Range : solve NIC Problem

Range of Class B IP Address : –
Network ID : 16 Bit(8+8)
Host ID : 16 Bit (8+8)
  • First two Bit will always be One and Zero
  • 14 Bits in Network part – Over 16,000 possible Class B Network
  • 16 Bits in Local Part  – Over 65,000 possible Hosts
Network ID(N)
Network ID(N)
Host ID(H)
Host ID(H)
0                                        15 | 16                                                    31
10NNNNNN          .     NNNNNNNN     . HHHHHHHH       . HHHHHHHH
In Binary :
Class B starts fr0m : 10000000.00000000.00000000.00000000
Class B ends at        : 10111111.11111111.11111111.11111111
In Decimal :
Class B IP Address is from to
Number of Networks : 2^14
Number of Hosts : 2^16
SOME EXCEPTIONS IN CLASS B : Cannot be assigned to host
169.254.X.X : Reserved for APIPA (Automatic Private IP Address) – Host take IP Automatically ifit doesn’t get any DHCP Server in the Network.

Range of Class B IP Address : –
Network ID : 24 Bit(8+8+8)
Host ID : 8 Bit (8)
**Most Popular and Commonly Used**
  • First three Bit will always be One,One and Zero
  • 21 Bits in Network part – Over 2 Million  possible Class C Network
  • 8 Bits in Local Part  – Only  256 possible Hosts per class C Network
Network ID(N)
Network ID(N)
Network ID(N)
Host ID(H)
0                                                                        23 | 24                             31
110NNNNN            .    NNNNNNNN   .      NNNNNNNN     .      HHHHHHHH
In Binary :
Class C starts from : 1100000.00000000.00000000.00000000
Class C ends at        : 11011111.11111111.11111111.11111111
In Decimal :
Class C IP Address is from to
Number of Networks : 2^21
Number of Hosts : 2^8

Range : –
IP Address begins with 1110

Used for Multicasting, Not defining networks.
  • Sending messages to group of hosts
  • just to one (Unicasting)
  • ALL HOSTS (Broadcasting)
  • Say to send a videoconference stream to a group of receivers
In Binary :
Class D starts from : 11100000.00000000.00000000.00000000
Class D end at        : 11101111.11111111.11111111.11111111
In Decimal :
Class D IP Address is from to – OSPF
All OSPF Routers address is used to send HELLO PACKETS – OSPF
All the routers address is used to send OSPF routing information to designated routers on a network segment. – The Routing Information Protocol (RIP) version 2 group address is used to send routing information to all RIP2-aware routers on a network segment. – EIGRP
used to send routing information to all EIGRP routers on a network segment. – Virtual Router Redundancy Protocol.


A public also called as  External IP address is the one that your ISP (Internet Service Provider) provides to identify your home network to the outside world. It is an IP address that is unique throughout the entire Internet.
When you’re setting up your router, if your ISP issued you a static IP address, you enter it into your router’s settings. For a dynamic IP address, you specify DHCP in your router’s network settings. DHCP is Dynamic Host Control Protocol. It tells your router to accept whatever public IP address your ISP issues.
Those who wanted not to connect through internet but they wanted to run their network on TCP/IP Protocol
Here came the concept of PRIVATE  IP
Just as your network’s public IP address is issued by your ISP, your router issues private (or internal) IP addresses to each network device inside your network. This provides unique identification for devices that are within your home network, such as your computer, your Slingbox, and so on.
Internet Protocol Address :
           Reserved IP Address :
  1. Addresses beginning with 127 are reserved for loopback and internal testing – Used for Self Testing that TCP/IP is properly working or not.
  2. XXX.0.0.0 reserved for Network Address
  3. XXX.255.255.255 reserved for Broadcast
  4. – First Address – Represent Local Network / Used for Default Routing
  5. – Broadcast
Example : Let a Class A IP Address be –
               Network Address –
               BroadCast Address –
 : Let a Class B IP Address be –
               Network Address –
               BroadCast Address –

I hope that gives you a good knowledge of IP Addresses and their classes.
Now, We can move on to what sub-netting is, in my next blog.
Please Follow this link to get on to sub-netting –
Classless Inter Domain Routing Made Easy (Cont..)